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ON THE STABILITY OF THE LINING OF A HORIZONTAL
OPENING IN A VISCOELASTIC AGEING MEDIUM®

N.KH. ARUTYUNYAN, A.D. DROZDOV and V.BE. KOLMANOVSKII

The stability of a long elastic tube in a viscoelastic medium is studied.
Stability conditicns, formulated ir terms cof the characteristics of the
tube and the medium, are set up. Such probelms are of interest in
studying the stability of undergrcund structures /1-3/. The stability
problem for a tube in the case whern the medium is elastic was studied
in /4/. This paper touches on the investigations in /5,6/.

1. Formulation of the problem. At a depth H from the daylight surface in mountain

rock, let there be a working (opening) of circular cross-section of radius R. The rock is
considered tc be a homogeneous, isotropic, viscoelastic medium filling the half-space. The
working is reinforced, i.e., an elastic cylinder is imbedded which is fixed to the material
of the rock surrcunding the working. The lining is considered to be a homogeneous elastic
medium. Far from the ends of the working, plane strain is realized in the rock and the
lining. According tc /7/, for H/R > 50 the problem of determining the state of stress and
strain of the lining can be simplified and the lining can be considered as an elastic tube
reinforcing a cylindrical hcle in a viscoelastic space which is compressed by the uniform
forces py = yH, p, =v (1 —«~)'vyH far from the hole, where y is the specific gravity, and
v is Poisson's ratio of the rock.

Let the viscoelastic medium occupy all three-dimensional space. Let z;, 1, 7; denote the
coordinates of points of the medium in a Cartesian coordinate system Oz,1,2,. A cylinder
7,? + 2,2 < 1 is cut out of the medium, where the radius can be taken to be egual to unity without loss
of generality. A circular elastic tube whose external radius equals unity is inserted into the hole
being obtained. At the time'? = 0 compressive forces of constant intensity p; along the Oz, axis
and p, along the Oz, axis are applied to the viscoelastic medium at infinity, and a force of intensity
gdirectedperpendiculartothetubeaxisisappliedtotheinnersurfaceofthetube. We introduce
the cylindrical coordinate system Ordz,, whose axis Uxr, coincides with the tube axis, while
the polar angle ¢ is measured from the Oz, axis. The forces applied to the inner surface of

*prikl.Matem.Mekhan.,4%,3,453-4€21,1985
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the tube are statically equivalent to zero, i.e. (g, 8, are the radial and tangential
components of the vector g)

8 =0,{gsin®+ gycos 8 =0, (grcos® — gysin ) =0
(= § 19)a8)

Let u = (u,. u,, u,) be the displacement vector of the medium, and w = {wy, wy, w3} the
displacement vector of the tube middle surface in the coordinate system Ordz,, A plane state
of strain is realized in both the tube and the medium under the effect of the forces p, g i.e.

us——=w3=0, u,-:r-ui(t,r,\‘)), wizwi(Iiﬂ) (i=112) (1.1}

In conformity with the classical Lyapunov definition of the stability of dynamic systems,
we call the tube stable if for any &> ( there are §,(e) >0, §, (¢) > 0 such that there follows
from the inequalities

supg {lg, (8) | + 1 £ (8) 1) < 8y, [Py 2o | << 8y

the estimate
supe Jus (6. ®) |+ lu, (1, D) ) < e

for all 120, —na L oL n.

2. Tube state of stress and strain, wWe present the equation for the tube
deflections under the following assumptions. The tube is an elastic cylindrical shell of
infinite length and constant thickness h which is much smaller than its external radius, i.e.,
L 1. The displacements of the tube middle surface are small compared with its thickness.
The strain tensor components g; are related to the stress tenscr components o, of the
tube in the c¢ylindrcial coordinate system by the equations

€5 ZEO-] [(1 "’"\'0) Gjl—\'gﬂ'éﬂ] (],l=’~“ 1. 2, 3) (2.1)
oy = Fo (I — vy ey — vo (1 — 2vp)™ 8dy]

Here FE, is the elastic modulus, v; is Poisson’s ratio of the tube, 0 = 0;,8 = §;
(summation is performed over repeated subscripts), 8; are the Kronecker deltas, and we set
£)) = &y, B3y = &g, €tc, The transformations performed below are valid apart from guantities
o ().

We interpret a tube element of unit height and thickness h as & thin elastic curve of a
xod /8/. Because of (1.1) this element is in a plane state of strain, i.e., &;=0 for j=
i, 2, 3. Moreover, it is considered that Kirchhcff's hypctheses are valid for the tube
element (/9/, p. 54) in conformity with which g, = &, = 0. Hence, and from (/10/, p. 26)
it follows that

gy = Bp" = (1 — p) ( — e’ )t ® o= g ¢ Upays By = (2.2

Wym Uy

Here p is the radius of curvature, x is the additional curvature of the tube element,
£,,° is the angle of rotation of the tube element relative to its initial position. The
notation uy = ¢ or’6® is used for the derivatives.

Finally, it is assumed that g, = o (h). Hence, and from the last relationship in (2.2)
it follows that

Uy = —Uy gy (2.3)

The rod radius of curvature p is related to the increment in the curvature by x = Pt~
1, i.e., for small curvatures cf the longitudinal axis p=x 1 —x.

By Kirchhoff's hypcthesis ¢, = (. This means that by virtue of {2.1) the eguation
e = —vg {1 — voJ' &, holds. Hence, and from (2.1} it follows that

Tpp == Ec (I — 4 €32 (2.4}

Let N be a normal force, { the transverse force, and ¥ the bending moment acting on the
tube element, i.e.
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Substituting {(2.4) and (2.2) here instead of Gy, , and taking account of (2.3), we
obtain (D is the cylindrical stiffness of the tube)

=Fh {1 — v ren', M =Dx (2.5
(13 = EH 12 (1 — v )I)

The equilibrium equations for the tube element have the form (/11/, p. 421)

oN Qo 60 | N o M
'55-——5’*1“?2—-*0; '733'*}'-9——:—33——-—0. W+Q=0 (2.6)

PR VT, N SR . S 1 S RN Y
o LN€ TuLe element and airedted a.x.cng The

Y .
and Q from the egquilibrium Egs.(2.6), we obtain an equation for the bending
moment, from wulCh we conclude by taking the second relationship in {2.5) into account that

D (03 ~+ %,01) = gy,00 — (@2%),00 — G2 (2.7)

Since the tube thickness is small, the displacements of points of the rod longitudinal
axis coincide with the displacements of the medium on the boundary with the tube

U=y, U=y, =1, —a ¥ (2.8}
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under consideration and their derivatives.
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the state of stress and strain of the medium.

3. Equations of state of the medium. Let g, (rr,® and £;(/, 7, 8) be the stress
and strain tensor components of the medium in the coordinate system Ordr;. We assume that
the mean stress ¢= ¢;; 3 and the mean bulk strain & = g;; 3 are connected by the relationship

Yol o =

be is d by e qua
that conslst of periodicity in '8 with p
To close these ecquations

th def is

=(1—2N)0E (3.1

where £ is the instantanecus elastic modulus and v is Poisson's ratio of the medium.
The strain and stress tensor deviators ey, s; of the medium satisfy the relationship
en=FE {1 = vi(I - K)s;, e -,:::8'1—-—5& (3.2)
:F( Y] e Be., p,-—-—n\._..m’s
A l s EA A

A RPN
t

{
{

=k v dn Bey={re vey(r)ar)
a8 ¢

Here I is the unit operator, XK is the creep operator, and R is the relaxaticn operator.
It is assumed that the relaxation Xernel is r {f, 1) >» 0and continuous functions I, {¢t. 1),

I, {t. %) and a2 constant P = (0, 1) exist such that
rg, ) =, )t — P =L (1), 0Tt (3.

tad
Tat

[ri=sup, Sr(r, Tydr < 4
4

Let us transform the egquations: 1} and {3.2). By virtue of (3.2) we obtain

s
(A and u are the Lané parameters

T :(3!1 "“QHHX E‘é;}‘:—:)u (}""R) £ {3.4)
A= Evi S =297 p=FER 0

Ml abrmies ~f +he modiur iz nlanar, .o e.. == {} Hanre, and from (3.4) it follpows that
L€ BTYALN OO WNE TRUGL UL A6 pealdl ) 4484y €js (2 nencve, alQ Xl (2.2) L& -
Oy = (30 4 2pR) ¢ Conseguently the mean stress is
g = loy; + o, — (3 + 2uR) el 3 (3.5
We substitute its expression in terms of €& from (3.4) for ¢ into (3.5) and we take
account of the expressions for & and p. We obtain -
Gg == Oy & Oy = MW (3] — (1 —2v) R)e (3.8)

= (37 v (I + K)o

The operator K; is defined by the formula [ -+ K; = (I — (1 — 2v) R/3)™,
The equality
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-Gy + 3vTle = E {1 + v)? Re

follows from (3.6). )
Replacing & on its left side in conformity with (3.6), we cbtain an expression for Re
which when substituted into (3.4) finally yields

(I —Ryey=E* (1 +v) oy — (v + (1 4+ v) K;) agdyl (3.7}

Furthermore, we consider that the elongation, shear, and angle of rotation of the material
of the medium are small and can be neglected in the equilibrium eguations of the form

s Sy = 3 Sga, 28
o ot =+ BE 0, o g+ R+ SR =0 (3.8)

and the strain compatibility eguations
W(e)=0; W ==cos® Oea, 50+ sin> §(reay, 10 + regs, o) — (3.9)

. g . s .

2sinBcos & = (1 7lee, ) sin? Oeyy, o5

R R : a4 .

082 8 (rleu, 10 -+ Fen, o) + 28in Beos & = (Fley )
. - _ . 9 . .

2sin ¢ cos B (Ferg, 20 + 780, 0 — E12,20) — 2{c0s? § — sin? B) o= (rFese )

We substitute the expression for the strain (3.7) into (3.9). We obtain an eguation
expressing the condition of stress compatibility

C1ze 9% 1 48 § &
(1= dop== (] —~ Ry Wio)y A=mommy +‘T"§? + 75 (3.10

The operator KR, has been introduced into (3,10) using the formula J -+ R, = ({ — K"},
Ky={1+9){1 -~ A,

The stresses ¢, are expressed in terms of the Airy function F = F ({,r,¥) by using
the egualities

G ="r"F 15~ r2F g2, Op==F 3 Ora==—(r"'F o1) 10 (3.11)

We note that the eguilibrium Egs.{(3.8) are satisfied for the stresses defined by {3.11).
Substituting (3.11) into (3.10}, we obtain
AF =10 (3.12)
The boundary conditions for (3.12) have the forxm (2.8) at the contact points between the
tube and the medium, and at infinity are
201 = — (71 + p2) — (1 ~ pa) cos 2¢ (3.13)
20 = ()1, = p3) ~ (py = py) cos 20
20 = (py — Fo)sin 28, r= oo
Furthermore, it is considered that sgquares of the elongations, shear, and angle of
rotation, i.e.,

£33 = Upger Eap = T {Uge = uy) (3.14)
— L ~1
2eyy = Ugp T (g0 — Uy)

can be neglected in considering the relation between the strains and the displacement of the
medium.

We set F = Fy+ F,. BHere F, satisfies (3.12), the boundary conditions (3.13), and the
zerc boundary conditions (2.8). The function F, satisfies (3.12), the boundary condition
(2.8), and the zerxc boundary conditions (3.13), We let ¢, denote the stress defined by
(3.11) for F = Fy,k = 0, 1. It is clear that

=g —0ut.1,98). =g +o,{1.8 (3.15)

Consequently, to determine g; it is sufficient to find F; because oy = 0;° + 0,

4, Construction of F, we seek F, in the form

Fo= (e =) Inr = ¢ — ¢ — (cr* = cor? + 1 + cg7™2) cos 29 (4.1)

where thetime functions ¢;{f) are to be determined. We substitute (4.1} into (3.11}. Then
by virtue of the boundary conditions {3.13) and the boundedness of 0;° for r>1, we obtain

=10 =0, c3= —(ps = p) 4 ce= (py — p)Vd (4.2}
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Hence, it follows from (4.1) and (3.11) that
0,° = — (P + P2)/2 + ™ — [(py, — P22 + dear™ + (4.3)
6cgr~¢] cos 24
Oy = — (P = PaV/2 — 8™t + [(p, — 3)/2 + 6car™] cos 28
01" = =2 l(py — pa)'4 + ™% + 3cer~4) sin 20
To determine the remaining functions ¢; () we use the zero boundary conditions (2.8).

We first express x in terms of the strain. Because of (3.14), we will have Uy = TEyy — Uy, q; -
Differentiating this eauation with respect to r and using (3.14) we obtain

€ = 8 (reg)/0r — uy gy, Upye = 28, — 17V (Up g — Uyp)

We differentiate the second of these relationships with respect to % and we add it to
the first. By virtue of the second equation in (2.2) we obtain

® = By t+ Eapqo — 283501 — Ey5, T =1 (4.4;

Since the boundary ccenditions (2.8) are zero in the case under consideration, then x = 0
for r=1, i.e., taking (4.4) into account we obtain

€0 = 0, Eppyo— 281000 — € =0, r=1 (4.5)

We now determine the strain corresponding to the stresses (4.3) by means of (3.7) and
substitute them intc (4.5). We obtain an expression for Cqy €3y Cs- For r =1 we have by
virtue of (4.3)

01° = —l4 () (7. * p2) = B (1) (p. — py) cos 28] (4.€)
01" = (2B (1) + %3] (71 = Py)

A{)=1—13v] + (1 — 22) R} 3] — (1 — 2v) R 1

2B (1) = —1 + Y, [3] + 4 (4v] — (1 — 2v) R)I11

It is seern from (4.€) that fcr p;, = p, and g = 0 there is just the normal force N
balancing the external pressures in the tube.

5. Determination of the components g, From the formula for the complex
representaticn of the stress (/12/ p. 13€: it fcllows that

0111 — 1013] = ql - q — et (3({” - \‘l) lZ - 1 (5.1

Here g (1. 2). § (¢, z) are functicns of time (> 0 and the complex variable : = re'®, the
prime denctes the derivetive with respect tc z, and the upper bar the cemplex conijugate,
The functicns ¢ andé { are analytic in z for each fixed t. Furthermcre, by modifying the
derivaticn of the Kolcscv formule (/12/, p. 327) we obtain that the foliowing eguality hclds
ir the circle T'= {z. 'z =1}

¢ T’ T { 20
w, (I — K¢ —z¢ —§ =¢ (S.2]
Here
git.2y=E U — vV — R){u, — ) e? (5.3
%= 0—4v = (7 =30 (h—u), Ay =40 —v) (3 — &) A,
We introduce the operatcr H; by means of the focrmula (/] — Ry = (I — Ay~
There results fro- /5.2 ané the well-known results in (/12/, p. 315-317) that
1 ‘ st s)ds . .
({(fw :)=_W(1*H“\\~\s*—<‘:_’ l~l>i (5.4)
o 1 ‘T
t. 1 .
¥ :‘,:%Ri&-j—)ds——:—q. - (f o)
AT
1 Yoo, s
Y x\:,)m\ (c ds
r

To make the functicns ¢ ané { specific, we introduce the following function on I':
Vitiz) = — (g, — fup) €%, |21 =1

We note that g = £ (1 + )1 (I — R)V on the basis of (5.3).
Substituting the Fourier-series expansion for the functions w, (1. 9)



ap(t) + 2 [an (t) cosn® — by, () sin n 8] (5.5)

n=1

H)z(fy 'ﬁ)"—— :

into the boundary condition (2.8), we obtain that on T

uy=aysin 9 — b, cos 8+~ 3 n(a,sin n® — b, cosn) (5.6)
Na=2

1 ‘ . .
Uy = ~5-ao —aycos ¥+ bysind +
n

D2s

(apcos n® + by sin nd)

It
[t

The components in the right side of each of the relationships (5.6) outside the infinite
sums describe the displacement of the boundary of the medium as a rigid whole: counter-clock-
wise rotation around the Or, axis through an angle a4/2, displacement by a distance —p,
along the (O, axis, and displacement a distance a; aleng the Or, axis. *

In the case under consideration the boundary conditions (3.13) are zero, hence they
underge no rigid displacements of the medium as a whole, i.e., the whole medium will be
displaced exactly as is its boundary. However, when considering the strain of the medium,
its displacement as a rigid whole is of nc interest, hence we can set a¢=a, = b, = 0.

Taking account of these equalities we obtain

Vit o)== 3 (i) = (n £ ) ez
n=2
en (1) = by (1) T+ iay (1)
It hence follows from the thecrem on residues and relationships (5.3) and (5.4) that

¢ (s :)=—Sn2_”(n N (5.7)

=8 3 (1= )50 — 8 T (0 — )8 g (o)
n= n=2
S=w, (I +R)U —R). S =u(l — Ry

We substitute (5,7) intec (5
obtain that on T (i.e., for |

—

[

and we separate real and imaginary parts., We finally
1

)

o«

oullt, B)= 2 (n* — 1)(S — 51) (b, cos n® — a,, sin n¥) (5.8)
n=2
o

gl (t. §)= Z (n*— 1) (&1 — S)(a, cosn® — b, sin ng)
n=2

Formulas (4.6) and (5.8) determine the acticn of a tangential force of intensity o,
and of normal pressure of intensity -0,; on the tube fromthe viscoelastic medium.

: \

The desired forces ¢, and g, in (2.7} are

=g —0y —0 =g 0, 0y 15.9)

where ¢,,° and o;' have the form (4.6), while o)) and o0, are given by (5.8).

6. Tube stability conditions. we set up the stability conditione under the
additional assumption

o> - (6.1)

Taking (€.1) intc account we write the equation for the deflections (2.7) anéd (5.9)
in the form

D (wp,06 =+ 2uwy0q + Wy 0) T 0 [00) (Ung = Upe9)] 08 = Q1,00 — 22 (6.2}

The boundary conditions for (6.2) consist of the values of the function u, and its
derivatives to fifth order, inclusive, being equal at the points —n and 7n.

Let us take a certain integer n > 2. We multiply both sides of (6.2) by cosn® and we
integrate with respect tc ¥ between the limits —x and 7. Taking account of the
orthogonality of the system of functions sinn® and cos n% and the expansions (5.5), (5.8),
(5.9), we obtain

(i —1)J (1, n)a,(t)=G(n)— (6.3)
YenB (t) 1 (ps — po) [ar.o (n ~ 2)(n ~ 22 — 1) — ’
8nmt (n— 2) ((n — 2)? — 1)]

3

G (n)==\ (g2cosn® = ng,sinnd)dd

le

n

J (¢, n)=Dn*(n?~1)—A (1) (p; + p)n?—(Sy— §) +(S1 + S)n
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It is clear that

We furthermore assume that (/ -+ Rg){I/ — R) =] — R,, where the kernel r, {{,1) of the
operator H, satisfies conditions of the form (3.3). We introduce the notation

Ay =max; la, (1) ], B () =max; 1 b, (v) ], 0ot
Ainrrd =D (R* — ) +p (1 —|r])(n — 1)+
prg ™ (1 — el ) (0 1)
Mlroryy =ming W A (n,rorg), nx2
It is clear that

i i
\Sr(f- T}an(T)a’rI | 4a(t) ]Srs(z, T)an(r)d'rls{frs{fiﬂ{f)
o 8
Consequently, taking account of (6.3) and (6.4), we have
A4, ()< L4y (€.5}
Ay =x{n, rory) —n*4 () (py =+ po)
L4, =03 (n — glwrzB 1) — pa 12 (R~
OB =~ 24, — B (o — 4,1-,_?. n> 2 B(n) =
n{n® — 1
We impose two constraints on the parameters of the problem
(5 + oy A <Ay r,1y) 6.6
P B () Gy — padtsupaB v 23INTT 0O B () () &, ™
AV =4 B =42, n >0 By () = @ — 1)
Here y{n) =0 for »n = (.1 and y(u) =1 for n3>»L
Because of (6.6 trlere is a constant ¢ > 0 such that
Adn) = o {€.8

Now we sum both sides cf (6,5} with respect to n. Taking ascount ¢f (€.81-{6.8), we

can show that a constant ¢ > { exists such that

é\.@\{g} L (€.2:
The sun of the functions B, ({) is es;imated analogously
72&“) g — e i Bt (g pa)i (6.10
Therefocre
ta (0 B T S [4n () — B, 1] (€.31)

To estimate 1w, W& regulre that
PB gy — padisupy Byt — )T ) By Oz () = {
\1 1‘*4 ﬁ1¢—~—4)}<2 e 0
Be () = n% — 1
On satisfying conditions (6,.12), we deduce, as for (6.39) and {€.10), that

[

oy
N
po

x

D n(dn~ By <arlgl =l Bujip—pl (6.13

This meang that .

e {fs ﬂ):xlbicﬂQ 2 n{Ay— By) (£.14;
ney

By virtue of (6.11), (€.14) we thereby establish

Theorem Let the assumptions formulated above be satisfied. Then the tube is stable

when conditions (6.63},(€.7), (€.12) are satisfied.
The stability conditions can be formulated in other terms depending on the limit behavicur

of the kernels r and Ty
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Theorem 2. Let functions r° (¢, 1) and rs (1, 1) exist such that
1

lim sup( [r{t Ty —r°(ty T)] | rslty T)—r(t ){]dr=0
T—x 1}7‘7-

[rel<<t, i<t
Then the tube is stable when conditions (6.6), (6.7) and (6.12) are satisfied everywhere

in which r° should replace r and r;° should replace ry.

Remark. 1°. Let p,=p,=p. Requirements (6.7) and (6.12) are satisfied here. Then
the tube is stable for p< it — 4 (4, (r.ry) under the conditions of Theorem 1, and for p<[1+
A O r ¢° r®) under the conditions of Theorem 2 (the function A4 (1) is defined in (4.6)).

29, Let p, = p,= p, and the equations of state of the medium have the simpler form

o =E 1+~ R)len + 3v (1 — 2v) g6y

Then both the formulation and the proof are simplified, in which it is necessary to set
Ky=Ry=0 everywhere. In particular, in this case

0 =—pll+ pu -+ pr3, 0,°=0
Oy’ = —pll — p(h+ pyird)

Under the conditions of Theorem 1 the tube is stable for
P (b p) (R L 20070 (. 0) (6.15)

°

and under the conditions of Theorem 2 the quantity r in (6,15) is replaced by r°.
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