2. GALIN L.A., Contact Problems of the Theories of Elasticity and Viscoelasticity. Nauka, Moscow, 1980.
3. KRAVCHUK A.S., On the Hertz problem for linearly and non-linearly elastic bodies of finite size, PMM, Vol.41, No.2, 1977.
4. KUZ'MENKO V.I., On a variational approach in the theory of contact problems for non-linearly elastic layered bodies. PMM, Vol.43, No.5, 1979.
5. HILLS D.A., Some aspects of post-yield contact problems, Wear, Vol.85, No.l, 1983.
6. DUVAUT G. and IIONS J-L., Inequalities in Mechanics and Physies/Russian translation/, Nauka, Moscow, 1980.
7. FICHERA G., Existence Theorems in Elasticity Theory /Russian translation/, Mir, Moscow, 1974.
8. ISHLINSKII A. YU., The axisymmetric plasticity problem and Brinell test, PMM, Vol.8, No. 3, 1944.
9. SHIELD R.T., On the plastic flow of metals under conditions of axial symmetry, Proc. Roy. Soc., Ser. A, Vol. 233, No.1193, 1955.
10. BANICHUK N.V., KARTVELISHVILI V.M. and CHERNOUS'KO F.I., Numerical solution of the axisymmetric problem of impression of a stamp in an elastic-plastic medium. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.l, 1972.
11. GLOVINSKI R., LIONS J.-L. and TREMOLIER R., Numerical Investigation of Variational Inequalities /Russian translation/, Mir, Moscow, 1979.
12. VLASENKO YU. E., KUZ'MENKO V.I. and FEN', G.A., Contact problem for an elastic-plastic multilayer packet taking delamination of the layers into account, Izv. Akad. Nauk SSR, Mekhan. Tvera. Tela, No.5, 1978.

Translated by M.D.F.

PMM U.S.S.R., VO1.49,NO.3,pp. 348-355,1985
$0021-8928 / 85 \$ 10.00+0.00$
Printed in Great Britain
Pergamon Journals Ltã.

on the stability of the lining of a horizontal opening in a viscoelastic ageing medium*

N.KH. ARUTYUNYAN, A.D. DROZDOV and V.E. KOLMANOVSKII

Abstract

The stability of a long elastic tube in a viscoelastic medium is studiec. Stability conditicns, formulated ir terms of the characteristics of the tube and the medium, are set up. Such probelms are of interest in studying the stability of underground structures / / - 3/. The stability problem for a tube in the case wher the medium is elastic was studied in /4/. This paper touches on the investigations in /5,6/.

1. Formulation of the problem. At a depth H from the dayight surface in mountain rock, let there be a working (opening) of circular cross-section of radius R. The rock is considered tc be a homogeneous, isotropic, viscoelastic medium filling the half-space. The working is reirforced, i.e., an elastic cylinder is imbedded which is fixed to the material of the rock surrourding the working. The lining is considered to be a homogeneous elastic mediun. Far from the encs of the working. plane strain is realized in the rock and the lining. According to $/ 7 /$, for $H / R>50$ the problem of determining the state of stress and strain of the lining can be simplified and the lining can be considered as an elastic tube reinforcing a cylindrical hole in a viscoelastic space which is compressed by the uniform forces $p_{1}=\gamma H, \quad p_{2}=v(1-v)^{-1} \gamma H$ far from the hole, where γ is the specific gravity, and v is Poisson's ratio of the rock.

Let the viscoelastic medium occupy all three-dimensional space. Let x_{1}, x_{2}, x_{3} denote the coordinates of points of the medium in a Cartesian coordinate system $O x_{1} x_{2} x_{3}$. A cylinder $x_{1}{ }^{2}+x_{2}{ }^{2} \leqslant 1$ is cut out of the medium, where the radius can be taken to be equal to unity without loss of generality. A circular elastic tube whose external radius equals unity is inserted into the hole being obtained. At the time $t=0$ compressive forces of constant intensity p_{1} along the $O x_{1}$ axis and p_{2} along the $O x_{2}$ axis are applied to the viscoelastic medium at infinity, and a force of intensity g directed perpendicular to the tube axis is applied to the inner surface of the tube. We introduce the cylindrical coordinate system Or ϑ_{3}, whose axis $U_{x_{3}}$ coincides with the tube axis, while the polar angle θ is measured from the $O x_{1}$ axis. The forces applied to the inner surface of

[^0]the tube are statically equivalent to zero, i.e. $\left(g_{1}, g_{2}\right.$ are the radial and tangential components of the vector g)
\[

$$
\begin{aligned}
& \left\langle g_{2}\right\rangle=0,\left\langle g_{1} \sin \theta+g_{2} \cos \theta\right\rangle=0,\left\langle g_{1} \cos \theta-g_{2} \sin \theta\right\rangle=0 \\
& \left(\langle j\rangle=\int_{-\pi}^{\pi} f(\theta) d \theta\right)
\end{aligned}
$$
\]

Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ be the displacement vector of the medium, and $w=\left(w_{1}, w_{2}, u_{3}\right)$ the displacement vector of the tube midale surface in the coordinate system Orox ${ }_{3}$. A plane state of strain is realized in both the tube and the medium under the effect of the forces p, g i.e.

$$
\begin{equation*}
u_{3}=w_{3}=0, \quad u_{i}=u_{i}(t, r, \theta), \quad w_{i}=w_{i}(t, \theta) \quad(i=1,2) \tag{1.1}
\end{equation*}
$$

In conformity with the classical Lyapunov definition of the stability of dynamic systems, we call the tube stable if for any $\varepsilon>0$ there are $\delta_{1}(\varepsilon)>0, \delta_{2}(\varepsilon)>0$ such that there follows from the inequalities

$$
\sup _{\theta}\left(\left|g_{1}(\hat{v})\right|+\left|g_{2}(\hat{\theta})\right|\right)<\delta_{1}, \quad\left|p_{1}-p_{2}\right|<\delta_{2}
$$

the estimate

$$
\sup _{t, 0}\left(\left|u_{1}(t, v)\right|+\left|u_{2}(t, \theta)\right|\right)<\varepsilon
$$

for all $t \geqslant 0,-\pi \leqslant \theta \leqslant \pi$.
2. Tube state of stress and strain. We present the equation for the tube deflections under the following assumptions. The tube is an elastic cylindrical shell of infinite length and constant thickness h which is much smaller than its external radius, i, e, $h \ll 1$. The displacements of the twbe midcle surface are small compared with its thickness. The strain tensor components ε_{n} are related to the stress tensor components σ_{n} of the tube in the cylinarcial coordinate system by the equations

$$
\begin{align*}
& \varepsilon_{j l}=E_{0}^{-1}\left[\left(1-v_{0}\right) \sigma_{j l}-v_{0} \sigma \delta_{j l}\right] \quad(j, l=1,2,3) \tag{2.1}\\
& \sigma_{j l}=E_{0}\left(1-v_{0}\right)^{-1}\left[\varepsilon_{j l}-v_{0}\left(1-2 v_{0}\right)^{-1} \varepsilon \delta_{j l}\right]
\end{align*}
$$

Here E_{0} is the elastic modulus, v_{0} is Poisson's ratio of the tube, $\sigma=\sigma_{j j}, \varepsilon=\varepsilon_{j j}$ (summation is performed over repeated subscripts), δ_{n} are the Kronecker deltas, and we set $\varepsilon_{11}=\varepsilon_{r r}, \varepsilon_{12}=\varepsilon_{r 6}$, etc. The transformations performee below are valid apart from guantities o (h).

We interpret a tube element of unit height ane thickness h as a thin elastic curve of a rod/E/. Because of (1.1) this element is in a plane state of strain, i.e., $\varepsilon_{j}=0$ for $j=$ 1, 2, 3. Moreover, it is considered that Kirchncef's hypctheses are valia for the tube element (/9/, p. 54) in conformity with which $\varepsilon_{11}=\varepsilon_{12}=0$. Hence, and from (/10/, p. 26) it follows that

$$
\begin{align*}
& \varepsilon_{22}=\varepsilon_{2,2}^{\varepsilon}-(1-\rho)\left(x-\varepsilon_{22}^{c}\right) ; x=-u_{1,02}+u_{2,01} \varepsilon_{22}^{\varepsilon}= \tag{2.2}\\
& \quad u_{2,01}-u_{1}
\end{align*}
$$

Here ρ is the radius of curvature, x is the additional curvature of the tube element, ε_{22} " is the angle of rotation of the tube element relative to its initial position. The notation $u_{, j}=\hat{o}^{j+\}} u, o m \theta^{l}$ is usec for the derivatives.

Finally, it is assumec that $e_{2,}=0(h)$. Hence, and from the last relationship in (2.2) it follows that

$$
\begin{equation*}
u_{1}=-u_{2.01} \tag{2,3}
\end{equation*}
$$

The rod radius of curvature ρ is related to the increment in the curvature by $x=\rho^{-1}-$ 1. i.e., for small curvatures of the longitudinal axis $\rho=1-k$.

By Kirchoff's hypothesis $\sigma_{11}=0$. This means that by virtue of (2.1) the equation $\varepsilon_{11}=-v_{0}\left(1-v_{0}\right)^{-1} \varepsilon_{22}$ holds. Hence, and from (2.1) it foliows that

$$
\begin{equation*}
\sigma_{22}=E_{0}\left(1-v_{0}^{2}\right)^{-1} \varepsilon_{22} \tag{2.4}
\end{equation*}
$$

Let N be a nomal forse, Q the transverse force, and N the bending moment acting on the tube element, i.e.

$$
\begin{aligned}
& N=\int_{1-h}^{1} \sigma_{22} d r, \quad Q=\int_{1-n}^{1} \sigma_{12} d r \\
& M=\int_{1=n}^{1} \sigma_{22}\left(1+\frac{h}{2}-r\right) d r
\end{aligned}
$$

Substituting (2.4) and (2.2) here instead of σ_{22}, and taking account of (2.3), we obtain (D is the cylindrical stiffness of the tube)

$$
\begin{align*}
& N=E_{0} h\left(1-v_{0}{ }^{2}\right)^{-2} \varepsilon_{22}{ }^{0}, \quad M=D x \tag{2.5}\\
& \left(D=E_{0} h^{3}\left[12\left(1-v_{0}{ }^{2}\right)\right)^{-1}\right)
\end{align*}
$$

The equilibyium equations for the tube element have the form (/11/, p. 421)

$$
\begin{equation*}
\frac{\partial S}{\partial \theta}-\frac{Q}{\rho}+q_{2}=0, \frac{\partial Q}{\partial \theta}+\frac{N}{\rho}+q_{1}=0, \quad \frac{\partial M}{\partial \theta}+Q=0 \tag{2.6}
\end{equation*}
$$

The intensity of the total forces applied to the tube element and directed along the r, θ axes is denoted by $q_{1} \cdot q_{2}$.

Eliminating N and Q from the equilibrium Eqs. (2.6), we obtain an equation for the bending moment, from which we conclude by taking the second relationship in (2.5) into account that

$$
\begin{equation*}
D\left(x_{, 03}+x_{, 01}\right)=q_{1,01}-\left(q_{1} x\right)_{, 01}-q_{2} \tag{2,7}
\end{equation*}
$$

Since the tube thickness is small, the displacewents of points of the rod longitudinal axis coincide with the displacements of the medium on the boundary with the tube

$$
\begin{equation*}
u_{1}=u_{1}, \quad u_{2}=u_{2}, \quad r=1, \quad-\pi \leqslant \vartheta \leqslant \pi \tag{2.8}
\end{equation*}
$$

The deflection of the tube is detemined by the last two equations in (2.2), Eqs. (2.7) and the boundary conditions that consist of periodicity in θ with period 2 for for functions under consideration and their derivatives. To close these equations it is necessary to find the dependence of the forces q_{1} and q_{2} on the deflection. This is done below by anelyzing the state of stress and strain of the medium.
3. Equations of state of the medium. Let $\sigma_{i j}(t, r, 9)$ and $\varepsilon_{j 1}(t, r, 9)$ be the stress and strain tensor components of the medium in the coordinate system Orv x_{3}. We assume that the mean stress $\sigma=\sigma_{j j} 3$ anc the mean bulk strein $\varepsilon=\varepsilon_{j j} 3$ are connected by the reletionship

$$
\begin{equation*}
\varepsilon=(1-2 v) \sigma \cdot E \tag{3.1}
\end{equation*}
$$

where E is the instantaneous elastic modulus and v is poisson's ratio of the medium.
The strain and stress tensor deviators $e_{j l}, s_{j l}$ of the medium satisfy the relationship

$$
\begin{align*}
& e_{j l}=E^{-1}(1-v)(I-K) s_{j l}, \quad e_{j l}=\varepsilon_{j l}-\varepsilon \delta_{j l} \tag{3.2}\\
& s_{j l}=E(1-v)^{-1}(I-R) e_{j!} \quad s_{j l}=o_{j i}-d \delta_{j:}^{t} \\
& \left(K s_{j l}=\int_{0}^{1} h(t, \tau) s_{j l}(\tau) d \tau, \quad R e_{j l}=\int_{0}^{1} r(t, \tau) e_{j l}(\tau) d \tau\right)
\end{align*}
$$

Here I is the undt operator, K is the creep operator, and R is the relaxation operator.
It is assumed that the relaxation kernel is $r(t, r) \geqslant 0$ and continuous functions $l_{0}(t, \tau)$, $l_{i}(t, \tau)$ and a constant $\beta=(0,1)$ exist such that

$$
\begin{align*}
& r(t, \tau)=l_{0}(t, \tau)(t-\tau)^{-\hat{S}}-l_{1}(t, \tau), \quad 0 \leqslant \tau \leqslant t \tag{3.3}\\
& |r|=\sup _{t} \int_{0}^{1} r(t, \tau) d \tau<1
\end{align*}
$$

Let us transform the equations of state (3.1) and (3.2). By virtue of (3.2) we obtain (λ and μ are the Lamé parameters)

$$
\begin{align*}
& \sigma_{i t}=(3 \lambda-2 \mu R) \varepsilon \delta_{j i}+2_{\mu}(I-R) \varepsilon_{j} \tag{3,4}\\
& i=E v\left((1 \div v)(1-2 v)^{-1}, \quad \mu=E \mid 2(1+v)^{-1}\right.
\end{align*}
$$

The strain of the medium is planar, i.e., $\varepsilon_{j 3}=0$. Hence, and from (3.4) it follows that $\sigma_{33}=(3 \lambda I+2 \mu R) \varepsilon$. Consequently the mean stress is

$$
\begin{equation*}
\left.\sigma=\mid \sigma_{1 i}+\sigma_{22}-(3 \lambda \mid+2 \mu R) \varepsilon\right] 3 \tag{3.5}
\end{equation*}
$$

We substitute its expression in terms of ε from (3.4) for σ into (3.5) and we take account of the expressions for λ and μ. We obtain.

$$
\begin{align*}
& \sigma_{0}=\sigma_{11}+\sigma_{22}=\lambda v^{-1}(3 I-(1-2 v) R) \varepsilon \tag{3.6}\\
& \varepsilon=(3 \lambda)^{-1} v\left(I+K_{1}\right) \sigma_{0}
\end{align*}
$$

The operator K_{1} is defined by the formula $I+K_{1}=(I-(1-2 v) R / 3)^{-1}$. The equality

$$
-\sigma_{0}+3 \lambda v^{-1} \varepsilon=E(1+v)^{-1} R \varepsilon
$$

follows from (3.6).
Replacing ε on its left side in conformity with (3.6), we obtain an expression for fe which when substituted into (3.4) finally yields

$$
\begin{equation*}
(I-R) \varepsilon_{j l}=E^{-1}(1+v)\left[\sigma_{j l}-\left(v I+(1+v) K_{1}\right) \sigma_{0} \delta_{n l}\right] \tag{3.7}
\end{equation*}
$$

Furthermore, we consider that the elongation, shear, and angle of rotation of the material of the medium are small and can be neglected in the equilibrium equations of the form

$$
\begin{equation*}
\sigma_{11,10}+\frac{\sigma_{12,01}}{r}+\frac{\sigma_{11}-\sigma_{22}}{r}=0, \quad \sigma_{12,10}+\frac{\sigma_{22,01}}{r}+\frac{2 \sigma_{12}}{r}=0 \tag{3.8}
\end{equation*}
$$

and the strain compatibility equations

$$
\begin{aligned}
& W(\varepsilon)=0 ; \quad W=\cos ^{2} \vartheta \varepsilon_{22,20}+\sin ^{2} \vartheta\left(r^{-1} \varepsilon_{22,10}+r^{-2} \varepsilon_{22,02}\right)- \\
& \quad 2 \sin \theta \cos \theta \frac{\partial}{\partial r}\left(r^{-1} \varepsilon_{22,01}\right)+\sin ^{2} \theta \varepsilon_{11,20}- \\
& \quad \cos ^{2} \theta\left(r^{-1} \varepsilon_{12,10}+r^{-2} \varepsilon_{12,02}\right)+2 \sin \theta \cos \psi \frac{\partial}{\partial r}\left(r^{-1} \varepsilon_{12,01}\right)+ \\
& 2 \sin \vartheta \cos \theta\left(r^{-1} \varepsilon_{12,10}+r^{-2} \varepsilon_{12,02}-\varepsilon_{12,20}\right)-2\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \frac{\partial}{\partial r}\left(r^{-1} \varepsilon_{12,01}\right)
\end{aligned}
$$

We substitute the expression for the strain (3.7) into (3.9). We obtain an equation expressing the condition of stress compatibility

$$
\begin{equation*}
(1-v)\lrcorner \sigma_{0}=\left(I-R_{n}\right) W_{(\sigma)}, \quad \Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\hat{\partial} r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\hat{\sigma} ⿹^{2}} \tag{3.10}
\end{equation*}
$$

The operator R_{2} has been introduced into (3.10) using the formula $I+R_{2}=\left(I-K_{2}\right)^{-1}$, $K_{2}=(1+v)(1-v)^{-2} K_{1}$.

The stresses σ_{j} are expressea in terms of the Airy function $F=F(t, r, 0)$ by using the equalities

$$
\begin{equation*}
\sigma_{11}=r^{-1} F_{, 10}-r^{-2} F_{, 02}, \quad \sigma_{22}=F_{, 20}, \quad \sigma_{12}=-\left(r^{-1} F_{, 01}\right), 10 \tag{3.11}
\end{equation*}
$$

We note that the equilibrium Eqs. (3.8) are satisfied for the stresses defined by (3.11). Substituting (3.11) into (3.10), we obtain

$$
\begin{equation*}
\Delta^{2} F=0 \tag{3.12}
\end{equation*}
$$

The boundary conditions for (3.12) have the form (2.8) at the contact points between the tube and the medium, and at infinity are

$$
\begin{align*}
& 2 \sigma_{11}=-\left(p_{1}+p_{2}\right)-\left(p_{1}-p_{2}\right) \cos 2 \theta \tag{3,13}\\
& 2 \sigma_{22}=-\left(p_{1}+p_{2}\right)-\left(p_{1}-p_{2}\right) \cos 2 \theta \\
& 2 \sigma_{12}=\left(p_{1}-p_{2}\right) \sin 2 \theta, \quad r=\infty
\end{align*}
$$

Furthermore, it is considered that squares of the elongations, shear, ane angle of rotation, i.e.,

$$
\begin{align*}
& \varepsilon_{21}=u_{1,10} \quad \varepsilon_{22}=r^{-1}\left(u_{2,03}+u_{1}\right) \tag{3.14}\\
& 2 \varepsilon_{12}=u_{2,10}-r^{-1}\left(u_{3,01}-u_{2}\right)
\end{align*}
$$

can be neglected in considering the relation between the strains and the displacement of the meciun.

We set $F=F_{0}+F_{1}$. Here F_{0} satisfies (3.12), the boundary conditions (3.13), and the zero boundary conditions (2.8). The function F_{1} satisfies (3.12), the boundery condition (2.8), and the zerc boundary conditions (3.13). We let $\sigma_{n}{ }^{k}$ denote the stress definea by (3.11) for $F=F_{k}, k=0,1$. It is clear that

$$
\begin{equation*}
q_{1}=g_{1}-\sigma_{11}(t, 1, v), \quad q_{2}=g_{2}+\sigma_{12}(t, 1, \hat{v}) \tag{3.15}
\end{equation*}
$$

Consequently, to determine q_{j} it is sufficient to find F_{j} because $\sigma_{j l}=\sigma_{j l}^{0}+\sigma_{n j}{ }^{1}$.
4. Construction of $F_{0^{*}}$ We seek F_{0} in the form

$$
\begin{equation*}
F_{0}=\left(c_{2} r^{2}+c_{2}\right) \ln r+c_{3} r^{2}-c_{4}-\left(c_{3} r^{4}+c_{6} r^{2}+c_{7}+c_{8} r^{-2}\right) \cos 2 \vartheta \tag{4.1}
\end{equation*}
$$

where thetime functions $c_{j}(t)$ are to be determined. We substitute (4.1) into (3.11). Then by virtue of the boundary conditions (3.13) and the boundedness of σ_{n} (for $r \geqslant 1$, we obtain

$$
\begin{equation*}
c_{1}=c_{5}=0, \quad c_{3}=-\left(p_{1}-p_{2}\right) 4, \quad c_{6}=\left(p_{1}-p_{2}\right) / 4 \tag{4.2}
\end{equation*}
$$

Hence, it follows from (4.1) and (3.11) that

$$
\begin{aligned}
& \sigma_{12}{ }^{\circ}=-\left(p_{1}+p_{2}\right) / 2+c_{2} r^{-2}-\left[\left(p_{1}-p_{2}\right) / 2+4 c_{7} r^{-2}+\right. \\
& \left.6 c_{8} r^{-4}\right] \cos 2 \theta \\
& \sigma_{22}{ }^{\circ}=-\left(p_{1}-p_{2}\right) / 2-c_{2} r^{-2}+\left[\left(p_{1}-p_{2}\right) / 2+6 c_{8} r^{-4}\right] \cos 2 \vartheta \\
& \sigma_{12}{ }^{c}=-2\left[\left(p_{1}-p_{2}\right) / 4+c_{7} r^{-2}+3 c_{8} r^{-4}\right] \sin 2 \theta
\end{aligned}
$$

To determine the remaining functions $c_{j}(t)$ we use the zero boundary conditions (2.8). We first express x in terms of the strain. Because of (3.14), we will have $u_{1}=r \varepsilon_{22}-u_{2,01}$. Differentiating this eauation with respect to r and using (3.14) we obtain

$$
\varepsilon_{11}=\partial\left(r \varepsilon_{22}\right) / \partial r-u_{2,11}, \quad u_{2,10}=2 \varepsilon_{12}-r^{-1}\left(u_{1,01}-u_{2}\right)
$$

We differentiate the second of these relationships with respect to θ and we add it to the first. By virtue of the second equation in (2.2) we obtain

$$
\begin{equation*}
x=\varepsilon_{22}+\varepsilon_{22,10}-2 \varepsilon_{12,0_{1}}-\varepsilon_{11}, \quad r=1 \tag{4.4}
\end{equation*}
$$

Since the boundary conditions (2.8) are zero in the case under consideration, then $x=0$ for $r=1$, i.e., taking (4,4) into account we obtain

$$
\begin{equation*}
\varepsilon_{22}=0, \quad \varepsilon_{22,10}-2 \varepsilon_{12,01}-\varepsilon_{11}=0, \quad r=1 \tag{4.5}
\end{equation*}
$$

We now determine the strain corresponding to the stresses (4.3) by means of (3.7) and substitute them intc (4.5). We obtain an expression for c_{2}, c_{7}, c_{8}. for $r=1$ we have by virtue of (4.3)

$$
\begin{align*}
& \sigma_{11}{ }^{0}=-\left[A(t)\left(p_{-}+p_{2}\right)-B(t)\left(p_{-}-p_{2}\right) \cos 2 \vartheta\right] \tag{4.6}\\
& \sigma_{12}{ }^{c}=[2 B(t)+3 / 2]\left(p_{1}-p_{2}\right) \\
& A(t)=1-[3 v I+(1-2 v) R][3 I-(1-2 v) R)^{-1} \cdot 1 \\
& 2 B(t)=-1+1 / 2[3 I+4(4 v I-(1-2 v) R)]^{-1} \cdot 1
\end{align*}
$$

It is seer from (4.6) that for $\mu_{1}=\mu_{2}$ and $g=0$ there is just the normal force N balancing the external pressures in the tiabe.
5. Determination of the components $\sigma_{j l}{ }^{1}$. From the formula for the complex representation of the stress $/ / 22 / \mathrm{E}$. 136 ; it fcllows that

$$
\begin{equation*}
\sigma_{11}{ }^{1}-i \sigma_{12}{ }^{2}=\psi^{\prime}-\bar{q}^{\prime}-e^{2 i t}\left(\bar{\Sigma} \psi^{\prime \prime}-\psi^{\prime}\right) . \quad \mid z \geqslant 1 \tag{5.1}
\end{equation*}
$$

Here $\psi(t, z) . \psi(t, z)$ are Eunctions of time $t \geqslant 0$ and the compiex variable $z=r e^{i t}$, the prime denotes the derivative witr respect $t=z$, and the upper bar the complex conjugate. The functions 4 and ψ are analytic in z for each fixed t. Furthermore, by modifying the derivatior. of the koiosov formila $/ / 12 /$, f. 327) we obtain that the following equality holas ir the circle $\Gamma=\{z . z=1\}$

$$
\begin{equation*}
x_{1}\left(I-K_{3}\right) 千-2 \bar{q}^{\prime}-\bar{\psi}=g \tag{5.2}
\end{equation*}
$$

Here

$$
\begin{align*}
& g(t . z)=E(1-v)^{-1}(I-R)\left(\mu_{1}-i n_{2}\right) \tag{5.3}\\
& x_{1}=3-4 v=(i-3 \mu)(i-\mu)^{-2}, K_{3}=4(1-v)(3-4 v)^{-1} K_{1}
\end{align*}
$$

We introduce the operater R_{3} by means of the formula $\left(I-R_{3}\right)=\left(I-K_{3}\right)^{-1}$. There results from (S.i) and the weli-know: resules in (/12/, F. 315-317) that

$$
\begin{align*}
& \psi(t, z)=-\frac{1}{2 \pi\left(x_{1}\right.}\left(I-R_{s}\right) \int \frac{z(t, s) d s}{s-z}, \quad|z|>1 \tag{5.4}\\
& \psi(t, z)=\frac{1}{2 \pi!} \int \frac{\overline{z(t, s)}}{s-z} d s-\frac{1}{z} \psi-\psi(t, x) \\
& \psi(t, x)=\frac{1}{2 \pi} \int \frac{\overline{(t, s)}}{s} d s
\end{align*}
$$

To make the functions φ anc ψ specific, we introduce the following function on Γ :

$$
V^{\prime}(t, z)=-\left(u_{2,01}-i u_{2}\right) e^{i s}, \quad|z|=1
$$

We note that $g=E(1+v)^{-1}(I-R) V$ on the basis of (5.3).
Substituting the Fourier-series expansion for the functions $u_{2}(t, \vartheta)$

$$
\begin{equation*}
w_{2}(t, \vartheta)=\frac{1}{2} a_{u}(t)+\sum_{n=1}^{\infty}\left[a_{n}(t) \cos n \theta-b_{n}(t) \sin n \theta\right] \tag{5.5}
\end{equation*}
$$

into the boundary condition (2.8), we obtain that on Γ

$$
\begin{align*}
& u_{1}=a_{1} \sin \vartheta-b_{1} \cos \theta+\sum_{n=2}^{\infty} n\left(a_{n} \sin n \theta-b_{n} \cos n \theta\right) \tag{5.6}\\
& u_{2}=\frac{1}{2} a_{0}-a_{1} \cos \theta+b_{1} \sin \theta+\sum_{n=2}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
\end{align*}
$$

The components in the right side of each of the relationships (5.6) outside the infinite sums describe the displacement of the boundary of the medium as a rigid whole: counter-clockwise rotation around the $O_{x_{3}}$ axis through an angle $a_{0} / 2$, displacement by a distance $-b_{1}$ along the $O x_{1}$ axis, and displacement a distance a_{1} along the $O r_{2}$ axis.

In the case under consideration the boundary conditions (3.13) are zero, hence they undergo no rigid displacements of the medium as a whole, i.e., the whole medium will be displaced exactly as is its boundary. However, when considering the strain of the medium, its displacement as a Iigid whole is of no interest, hence we can set $a_{0}=a_{1}=b_{1}=0$. Taking account of these equalities we obtain

$$
\begin{aligned}
& V(t, z)=-\frac{1}{2} \sum_{n=2}^{\infty}\left[(n-1) c_{n} z^{n-1} \div(n+1) c_{n} z^{-n+1}\right] \\
& c_{n}(t)=b_{n}(t)+i a_{n}(t)
\end{aligned}
$$

It hence follows from the theorem on residues and felationships (5.3) and (5.4) that

$$
\begin{aligned}
& q_{F}(t, z)=-S \sum_{n=2}^{\infty}(n-1) \bar{c}_{n} z^{-\pi-1} \\
& \psi(t, z)=S_{1} \sum_{n=2}^{\infty}(n-1) \bar{c}_{n} z^{-n-1}-S \sum_{n=2}^{\infty}\left(n^{2}-1\right) \bar{c}_{n} z^{-n-1}-\psi(t, \alpha) \\
& S=\mu \mu_{1}^{-1}\left(I+R_{3}\right)(I-R), \quad S_{1}=\mu(I-R)
\end{aligned}
$$

We substitute (5.7) intc (5.1) and we separate real and imaginary parts. We finally obtain that on Γ (i.e., for $|z|=1$)

$$
\begin{align*}
& \sigma_{11}^{1}(t, \vartheta)=\sum_{n=2}^{\infty}\left(n^{2}-1\right)\left(S-S_{1}\right)\left(b_{n} \cos n \vartheta-a_{n} \sin n \vartheta\right) \tag{5.8}\\
& \sigma_{12}^{1}(t, \vartheta)=\sum_{n=2}^{\infty}\left(n^{2}-1\right)\left(S_{1}-S\right)\left(a_{n} \cos n \vartheta-b_{n} \sin n \vartheta\right)
\end{align*}
$$

Formulas (4.6) anc (5.8) determine the actick of a tangential force of intensity σ_{12} and of normal pressure of intensity $-\sigma_{11}$ on tie tube fromthe viscoelastic medium.

The desired forces q_{1} and q_{2} in (2.7) are

$$
\begin{equation*}
q_{1}=g_{1}-\sigma_{11}^{2}-\sigma_{11}^{1} \cdot q_{2}=g_{2}-\sigma_{12}=-\sigma_{2}^{1} \tag{5.9}
\end{equation*}
$$

where $\sigma_{11}{ }^{c}$ and $\sigma_{11}{ }^{1}$ have the form (4.6), while $\sigma_{11}{ }^{1}$ and $\sigma_{12}{ }^{\text {b }}$ are given by (5.8).
6. Tube stability conditions. We set up the stability conditions under the adaitionai assumption

$$
\begin{equation*}
\sigma_{11}^{c} \triangleq \sigma_{11}^{1}-g_{1} \tag{6,1}
\end{equation*}
$$

Taking (6.i) intc accoint we write the equatior. for the defiections (2.7) and (5.9) in the form

$$
\begin{equation*}
D\left(u_{2,06} \div 2 u_{2,04}+u_{2,02}\right) \div \hat{\rho}\left[\sigma_{11}^{*}\left(u_{2,01} \div u_{2,03}\right)\right]^{\prime} \hat{\sigma}=q_{1,01}-q_{2} \tag{6.2}
\end{equation*}
$$

The boundary concitions for (6.2) consist of the values of the function u_{2} and its derivatives to fifth orate, inclusive, being equal at the points $-\pi$ and π.

Let us take a certain integer $n \geqslant 2$. We multiply both sides of (6.2) by cos $n \theta$ and we integrate with respect to θ between the limits - π and π. Taking account of the orthogonality of the system of functions $\sin n \vartheta$ and $\cos n \vartheta$ and the expansions (5.5), (5.8), (5.9), we cbtain

$$
\begin{align*}
& \pi\left(n^{2}-1\right) J(t, n) a_{n}(t)=G(n)- \tag{6.3}\\
& \quad 1 / 2 n B(t) \pi\left(p_{1}-p_{2}\right)\left[a_{\pi-2}(n-2)\left((n-2)^{2}-1\right)-\right. \\
& \left.\quad a_{n-2}(n-2)\left((n-2)^{2}-1\right)\right] \\
& G(n)=\int_{-\pi}^{\pi}\left(g_{2} \cos n \vartheta-n g_{1} \sin n \vartheta\right) d \vartheta \\
& J(t, n)=D n^{2}\left(n^{2}-1\right)-A(t)\left(p_{1}+p_{2}\right) n^{2}-\left(S_{1}-S\right)+\left(S_{1}+S\right) n
\end{align*}
$$

It is clear that

$$
\begin{align*}
& |G(n)| \leqslant 1^{/ \pi}(n+1)|g| \tag{6.4}\\
& |g|=\left(\int_{-\pi}^{\pi} g_{1}^{2} d \theta\right)^{3 / 2}+\left(\int_{-\pi}^{\pi} g 2^{2} d \theta\right)^{1 / 2}
\end{align*}
$$

We furthermore assume that $\left(I+R_{3}\right)(I-R)=I-R_{3}$, where the kernel $r_{5}(t, \tau)$ of the operator R_{s} satisfies conditions of the form (3.3). We introduce the notation

$$
\begin{aligned}
& A_{n}(t)=\max _{7}\left|a_{n}(r)\right|, B_{n}(t)=\max _{\tau}\left|b_{n}(\tau)\right|, \quad 0 \leqslant \tau \leqslant t \\
& \lambda\left(n, r, r_{5}\right)=D n^{2}\left(n^{2}-1\right)+\mu(1-|r|)(n-1)+ \\
& \quad \mu x_{1}^{-1}\left(1-\left|r_{g}\right|\right)(n+1) \\
& \lambda_{1}\left(r, r_{s}\right)=\min _{n} n^{-2} \lambda\left(n, r, r_{5}\right), n>2
\end{aligned}
$$

It is clear that

$$
\left|\int_{0}^{t} r(t . \tau) a_{n}(\tau) d \tau\right| \leqslant|r| A_{n}(t),\left|\int_{0}^{t} r_{5}(t, \tau) a_{n}(\tau) d \tau\right| \leqslant\left|r_{5}\right| A_{n}(t)
$$

Consequentiy, taking account of (6.3) and (6.4), we have

$$
\begin{align*}
& A(n) A_{n^{\prime}}(t) \leqslant L\left(A_{n}\right) \tag{6,5}\\
& A(n)=\lambda\left(n, r, r_{3}\right)-n^{2} A(t)\left(m_{1}-\mu_{2}\right) \\
& L\left(A_{n}\right)=[1 \pi(n-1)]^{-1} g|-n B(t)| \eta_{1}-p_{2} \mid 12\left(n^{2}-\right. \\
& 1)]^{-1}\left[\beta(n-2) A_{n-2}-\beta(m-2) A_{n-1}!n \geqslant 2: \beta(n)=\right. \\
& n\left(n^{2}-1\right)
\end{align*}
$$

We impose two constraints on the parameters of the problem

$$
\begin{align*}
& \left(r_{1}+\eta_{2}\right) A(n)<\lambda_{1}\left(r, r_{5}\right) \\
& B(n)\left(n_{1}-\mu_{2}\right)!\sup _{n} B(n+2)\left(S^{-1}(n) \beta_{1}(n) \varnothing(n)-\right. \\
& \left.\quad A^{-1}(n-4) \beta_{1}(n \div 4)\right)<2, n>0 ; \beta_{1}(n)=n\left(n^{2}-1\right)^{-1}
\end{align*}
$$

Here $\gamma(n)=0$ for $n=0.1$ and $\chi(n)=1$ for $n \geqslant 2$.
Because of (6.6) there is a constant >0 such that

$$
A(n)>0 i^{i}
$$

Now we sum both sides of (6.5) with respect to π. Taking accourt $c f(6.6)-(6.8)$, we can show that a constant $c_{1}>0$ exists such hat

$$
\sum_{x}^{\infty}\{(b) \neq
$$

The sum of the functions $B_{n}(t)$ is estimated aralcgousiy

$$
\begin{equation*}
\sum_{n=2}^{\infty} B_{n}(1) \quad x_{1} H:-c_{2}\left\{B(t)\left(p_{1}-p_{2}\right)\right. \tag{6.20}
\end{equation*}
$$

Therefore

$$
w_{1}\left(t, y, \quad \sum_{n=2}^{2}\left[A_{n}(t)-B_{n}(t)\right]\right.
$$

To estimate u_{i} we rezuixe that
| $B(i)(j, \mu) \mid \sup _{n} \beta_{0}(n-2)\left[1^{-1}(n) \beta_{1}(n) \chi(n)-\right.$

$$
\begin{equation*}
A^{-1}(n-4) \beta_{1}(n-4)<2, n-0 \tag{6.12}
\end{equation*}
$$

$B_{2}(n)=n^{2}-1$
on satisfying conditions (6.12), we deduce, as for (6.9) and (6.10), that

$$
\begin{equation*}
\sum_{n=0}^{\infty} n\left(A_{n}-B_{n}\right) \leqslant c_{2}|g|+c_{2} \mid B(t)\left\{p_{1}-p_{n}\right\} \tag{6,13}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\left|w_{2}(t, v)\right|=\left|u_{1.01}\right| \leqslant \sum_{n=2}^{\infty} n\left(A_{n}-B_{n}\right) \tag{6.14}
\end{equation*}
$$

By virtue of (6.11), (6.14) we thereby establish
Theorem 2. Let the assumptions formulated above be satisfied. Then the tube is stabie when conditions (6.6), (6.7), (6.12) are satisfiea.

The stability conditions car be formulated in other terms depending on the limit beravicur of the kernels x and r_{s}

Theorem 2. Let functions $r^{*}(t, \tau)$ and $r_{s}{ }^{c}(t, \tau)$ exist such that

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \sup _{t \geqslant T} \int_{T}^{1}\left[\left|r(t, \tau)-r^{0}(t, \tau)\right|+\left|r_{5}(t, \tau)-r_{3}^{0}(t, \tau)\right|\right] d \tau=0 \\
& \left|r^{c}\right|<1, \quad\left|r_{5}^{\circ}\right|<1
\end{aligned}
$$

Then the tube is stable when conditions (6.6), (6.7) and (6.12) are satisfied everywhere in which r° should replace r and $r_{5}{ }^{2}$ should replace r_{5}

Remark. 1^{0}. Let $p_{1}=p_{2}=p_{1} \quad$ Requirements (6.7) and (6.12) are satisfied here. Then the tube is stable for $p<11-\left.A(t)\right|^{-1} \mu_{1}\left(r, r_{3}\right)$ under the conditions of Theorem 1 , and for $p<[1+$ $A(t)\}^{-1} \lambda_{1}\left(r^{\circ}, r_{s}{ }^{\circ}\right)$ under the conditions of Theorem 2 (the function $A(t)$ is defined in (4.6)).
2°. Let $p_{1}=p_{2}=p$, and the equations of state of the medium have the simpler form

$$
\sigma_{j i}=E(1+v)^{-1}(T-R)\left[\varepsilon_{j l}+3 v(1-2 v)^{-1} \varepsilon \varepsilon_{j l}\right]
$$

Then both the formulation and the proof are simplified, in which it is necessary to set $K_{3}=R_{3}=0$ everywhere. In particular, in this case

$$
\begin{aligned}
& \sigma_{11}{ }^{0}=-p\left[1+\mu(i+\mu)^{-1} r^{-2}\right], \sigma_{12}{ }^{c}=0 \\
& \sigma_{22}{ }^{c}=-p\left[1-\mu(i+\mu)^{-1} r^{-2}\right]
\end{aligned}
$$

Under the conditions of Theorem 1 the tube is stable for

$$
\begin{equation*}
r<(\lambda+\mu)(\lambda+2 \mu)^{-1 \lambda}(r,(1) \tag{6.15}
\end{equation*}
$$

and under the conditions of Theorem 2 the quantity r in (6.15) is replaced by r°.

REFERENCES

1. GUZ A.N., Principles of the Stability Theory of Mine Workings. Naukova Dumka, Kiev, 1977.
2. ALIMZHANOV M.T., Stability of Body Equilibrium and Problems of Mountain Rock Mechanics. Nauka, Alma-Ata, 1982.
3. GLUSHKO V.T., Appearance of Mountain Pressure in Deep Shafts, Naukova Dumka, Kiev, 1971
4. LEONOV M. YA. and PANASYUK V.V., Stability of casing tubes, Izv, Akad. Nauk SSSR, Otdel. Tekhn. Nauk, No.5, 1954.
5. ARUTYUNYAN N. KH. and KOLMANOVSKII V.B., Creep Theory of Inhomogeneous Bodies, Nauka, Moscow, 1983.
6. DROZDOV A.D., KOLMANOVSKII V.B. and POTAPOV V.D., Stability of rods from inhomogeneously ageing viscoelastic material, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.2, 1984.
7. SAVIN G.N., Mechanics of Deformable Bodies, Naukova Dumka, Kiev, 1979.
8. NOVOZHILOV V.V., Principles of Non-linear Elasticity Theory, Gostekhizdat, Moscow-Ieningrad, 1948.
9. KOROTKIN YA. I., LOKSHIN A.Z. and SIVERS N.I., Bending and Stability of plates and Circular Cylindrical Shells, Sudpromgiz, Leningrad, 1955.
10. NOVOZHILOV V.V., Theory of Thin Shells. Sucipromgiz, Leningrad, 1951.
11. RZHANITSYN A.R., Equilibrium Stability of Elastic Systems. Gosteknizdat, Moscow, 1955
12. MUSKHELISHVILI N.I., Certain Fundamental Problems of Mathematical Elasticity Theory. Izdat. Akad. Nauk SSSR, Moscow, 1954

[^0]: *Priki.Matem.Mekhar.,49,3,453-462,1985

