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ON THE STABILITY OF THE LINING OF A HORIZONTAL 
OPENING IN A VISCOELASTIC AGEING MEDIUM' 

N.KX. ARUTYUNYAN , A.D. DROZDOV and V.B. KOLMANOVSKII 

The staility of a long elastic t-be in a uiscoelastic mediiun is studied. 
Stability conditicns, formulated iT. terms c, l the characteristics of the 
tube and the medium, are set up. Such probelms are of interest in 
studying the stability of undergrc.und structures /l-3/. The stability 
problem for a tube in the case when the medium is elastic was studied 
in /4/. This paper to,Jches on the investigations in /5,6/. 

1. Formulation of the problem. At a depth H from the dayiight surface in mountain 
rock, let there be a working (opening) of circular cross-section of radius R. The rock is 

considered tc be a homogeneous, isotropic, viscoelastic medium filling the half-space. The 

working is reinforced, i.e., an elastic cylinder is imbedded which is fixed to the material 
of the rock surrcunding the working. The lining is considered to be a homogeneoiis elastic 
medi.um. Far from the ends cf the working, plane strain is realized in the rock and the 
lining. According to /7/, for H,R> 50 the problem of determining the state cf stress and 
strain of the lining car. be sinpiified and the lining can be considered as an eiastic tube 
reinforcing a cylindrical hcle in a viscoelastic space which is compressed by the uniform 
forces p1 = YH, p2 = ~(1 - v)-'yH far from the hole, where y is the specific gravity, and 
v is Poisson's ratio of the rock. 

Let the viscoelastic medium occupy all three-dimensional space. Let xl, x2, r3 denote the 

coordinates of points of the medium in a Cartesian coordinate system Oz,z,r,. A cylinder 

~~2 + ~~2 < 1 is cutout of themedium,where the radius canbetakentobe equaltounity without loss 
ofgenerality. Acircularelastictubewhoseexternal radiusequals unityisinsertedintothe hole 
beingobtained. Atthe time t = 0 compressive forces of constant intensity p1 alongthe Ox1 axis 
and p2 alongthe Oz, axis are appliedtotheviscoelasticmediumatinfinity,andaforce of intensity 
gdirectedperpendicularto the tube axisis appliedtotheinner surface of the tube. We introduce 
the cylindrical coordinate system Or%r,, whose axis L)x, coincides with the tube axis, while 
the polar angle 6 is measured from theOx, axis. The forces applied to the inner surface of 

*Prik:. Matem.Mekha~.,49,3,S53-4E',3985 
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the tube are statically equivalent to zero, i.e. &I, 472 are the radial and tangential 

components of the vector 9) 

(gp> =O,(g,sin6$g,cos6) =O, <g,cos6-g&W =0 

((f>= ~~~~~~~~~ 

Let u = (UI. US‘ u,fbe the displacement vector of the medium, and u: =I (wl,~~,a~) the 
displacement vector of the tube middle surface in the coordinate system &&z,. R plane state 

of strain is realized in both the tube and the medium under the effect of the forces p,g i.e. 

U.9 = U?s =I 0, Ui = Ui (iv r.ra)r Wi = Wi (tl 6) (i = I, 2) (1.1) 

In conformity with the classical Lyapunov definition of the stability of dynamic systems, 
we call the tube stable if for any E> 0 there are s,(s)> 0, &,(e)>O such that there follows 
from the inequalities 

the estimate 

supr.a (I Wl 0. 6) I + I U'z (t, 6) 1 ) < a 

for all t> 0, -n < 6 < n. 

2. Tube state of stress and strain. We present the equation for the tube 
deflections under the following assumptions. The tube is an elastic cylindrical shell of 
infinite length and constant thickness h which is much smaller than its external radius, i.e., 
h< I. The displacements of the tube middle surface are small compared with its thickness. 
The strain tensor components pjl are related to the stress tensor components oil of the 
tube in the cylindrcial coordinate system by the equations 

Eji = E,-’ I(1 - 1’0) Ujl - T\.,CJSj(l (j, I = 1, 2, 3) (2.1) 

Ujl = Eo (I - 70)~~ IEjl - Vo (I - 2vJr ebiil 

Here & is the elastic modulus, v0 is Poisson's ratio of 
(summation is performed over repeated subscripts), 6,l are the 
F a1 = E,,. El2 = E,8, etc. The transformations performed below are 
0 (il). 

We interpret a tube element of unit height and thickness h . 

the tube, D = ‘Jji, E = Fjj 

Kronecker deltas, and we set 
valid apart from quantities 

as a thin elastic curve of a 
rod /El. 
I, 2, 3. 

Because of (1.1) this element is in a plane state of strain, i.e., ej3 = 0 for j = 
Moxeover, it is considered that Kirchhcff's hypctheses are valid for the tube 

element (/9/, p. 54) in conformity with which E,, = eIQ = 0. Hence, and from (/LO/, p. 26) 
it follows that 

E 22 = %LC - (1 - p) (x - EzCc): x = -4C1,*r -L u-*,0,, e2; = (2.2) 

K&O1 - u'r 

Here Q is the radius of curvature, y. is the additional curvature of the tube element, 
F2z0 is the angle of rotation of the tube elemen The 
notation uSjl = Bj"'zc.arJit6' 

t relative to its initial posrticn. 
is used for the derivatives. 

Finally, it is assumed that F:,: = 0 (h). Hence, and from the last relationship in (2.2) 
it follows that 

24.1 = -U‘L.Ol (2.3) 

The rod radxus of curvature p is xelated to the increment in the curvatuxe by x = p-1 - 
1, i.e., for small curvatures of the longitudinal axis p=t.1--%. 

By Kirchhoff's hypothesis an = 0, 
en = -yD (1 - v,,)-~ ez8 holds. 

This means that by virtue of (2.11 the equation 
Hence, and from (2 .l) it follows that 

at1 = E, (f - r;)-' fzl 12.4) 

Let N be a normal force, D the transverse force, 
tube element, i.e. 

and Hthe bending moment acting on the 

h.=I~hazl&, Q= 5 ul?dr 
1-h 



Substituting (2.41 and (2.2) here instead of ot2 I and taking account of (2.3), we 
obtain &I is the cylindrical stiffness of the tirbe) 

x = &h ff - vq,‘)-’ EZ;, hf = hi C2.5) 
(D = E&3 tl2 (i - vo*)l-*) 

The equilibrium equations for the tube element have the form t/11/, p. 421) 

f, 6 
The intensity of the total forces applied to the tube element and directed along the 
axes is denoted by 91. 42. 

Eliminating N and Q from the equilibrium Eqs.i2.6) , we obtain an equation for the bending 
moment, from which we conclude by taking the second relationship in (2.5) into account that 

D (x,03 -- x,or) = Pl,OI - (4,x).0* - 42 (7.71 

Since the tube thickness is small, the displacements of points of the rod longitudinal 
axis coincide with the displacements c f the medium onthe boundary with the tube 

Ut = ZC>, up = lI:** r= 1, -il<6,<X. :2.E! 

The deflection of the tube is dsteimined by the last two equations in (2.2), Eqs. (2.7) 
and the boundary conditions that consist of periodic&y in 8 with period 2x for the functions 
under consideration and their derivatives. To close these equations it is necessary to find 
the dependence of the forces q, and q1 on the deflection. This is done below by analyzing 
the state of stress and strain of the medium. 

3. Equations of state of the medium. Let oj, (t.r,i)) and Fjl(ti r,6) be the stress 
and strain tensor components of the medium in the coordinate system &6x,. We assume that 
the mean stress a== 0,,3 and the mean bulk strain E = ejr3 are connected by the relationship 

e = (1 - 25.) 0 E C3.i) 

where E is the instantaneous elastic modulus and f is Poisson's ratio of the medium. 
The strain and stress tensor deviators Pjj, Sjl of the medium satisfy the relationship 

ej,= E-'(l -L ~)(l 1 K),~c,, e,, = Ejl- EE~I (3.2) 

sj,=E(i -_v)-l(I-Rftje,., ~,~=uj,-aoE, 
I t 

jK~,~=\k(t, T)~~~(T)~T, Re,!=Sr(f. 7fe,t(r)dTj 
i 0 

Here I is the unit operator, K is the creep operator, and R is the relaxation operator. 
It is assumed that the relaxation kernel is r(f.?)> Oand continuous functions I, (t. I), 

2,(i.~) and a constant BE (0,l) exist such that 

Let us transform the 
( 2. and p are the Lami 

equatiois of state (3.1: and (3.2). 3y virtue of (3.2) we obtain 
parameters! 

The strain of the medi,um is planar, i.e., Cja = 0. Hence, and from (3.4) it follows that 

us3 = (3i.Z + 2yR) E. Consequently the mean stress is 

u = IO,, " O*? - (3XI i" 2yR) El 3 (3.5) 

We substitute its expression in terms of E from (3.4) for u into (3.5) an6 we take 

account of the expressions for A and I". We obtain . 

a0 = aI1 + oz2 L iv-’ (31 - (1 - 2%‘) Rf E (3.6) 

E = (3:.)-l V (I -i_ h',) ffa 

The operator K1 is defined by the formula I + K, = (I - (1 - 2~) R/3)-', 
The equality 
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--UC, -?- 3hr-'E = E(f + v)-' & 

follows from (3.6). 
Replacing e on its left side in conformity with (3.6), we obtain an expression for RE 

which when substituted into (3.4) finally yields 

(I - R) E/I = C' (1 + v) IO]i - (VI + (i + v) fr',) u&l (3.7) 

Furthermore, we consider that the elongation , shear, and angle of rotation of the material 
of the medium are small and can be neglected in the equilibrium equations of the form 

(3.81 

and the strain compatibility equations 

W(e)= 0; W=cos2 I?Q~, 10 -+ sin* 6(f1ez2. ID $ r-Q%, &- 13.9) 

2sin 6cos 6 & (PQ?V 01) $ sin* @En, 20 L 

c0s2 #(r~l~ll.10 + r-%znm) + Zsin dcos 6 ~(~-%l. 011+ 

2sin 6cos 6 (r%rl,,, 4 r-*en,,~ - EI?.& - 2(cos* 19 -sin* 6) 4( T%,aJ 

We substitute the expression for the strain (3.7) into (3.9). We obtain an equation 
expressing the condition of stress compatibility 

(3.10) 

The operator f?, has beer. intro&x& into (3.10) using the formula I + R, = (I - KJ', 
K, = (I " v) (1 - r)_' K,. 

The stresses Oji are expressed in terms of the Airy function F = F(t,r,@) by using 
the equalities 

on = r-IF9 IO - r-*F,02, az2 = F , 20~ 012 = - @"F,ol). 10 (3.11) 

We note that the equilibrium Eqs.(3.8) are satisfied for the stresses defined by (3.11). 
Substituting (3.11) into (3.101, we obtain 

8=F = 0 (3.12) 

The boundary conditions for (3.121 have the fcm (2.8! at the contact points between the 
tube and the medium, and at infinity are 

20 11 = - h -7 PA - (PI - r/l) co9 29 (3.13) 

2a,, = --(I'. - &) - (p, - r+) CO? 28 
2a1, = (pl - p2)sin 28, r - 00 

Furthermore, it is considered that squares of the elongations, shear, and angle of 
rotation , l.e., 

Eli - u1.10. e22 = r-' (Q,o3 A UJ (3.14) 

2&i? = ~2.10 -L r-' (u,,o; - uz) 

can be neglected in considering the relation between the strains and the displacement of the 
medico. 

We set F -F, + F,. Here F, satisfies (3.12), the boundary conditions (3.13), and the 
zero boundary conditions (2.8). The function F, satisfies (3.121, 
(2.8), and the zero boundary conditions (3.13). We let ejik 

the boundary condition 
denote the stress defined by 

(3.11) for F = Fk,li = 0,1. It is clear that 

& = fl-- alI (t, f, 6). 9? = g, +- aI2 (t, 1, it) (3.151 

Consequently, to determine pj it is sufficient to find Fj because ai1 = ojl"+ uiI1. 

4. Construction of F,. We seek F, in the form 

F. = (c$ T c,) In r -+ car2 - c( T (c/ -L eer* i c7 f esrmZ) cos 26 (4.l) 

where thetime functions cl(t) are to be determined, We substitute (4.1) into (3.11). Then 
by virtue of the boundary conditions (3.13; and the boundedness of ulrC for r> 1, we obtain 

cz = C& = 0, cg = -_(& - p*) 4. Cb = (P1 - p&4 (4.2) 
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Hence, it follows from (4.1) and (3.11) that 

(Ju" = - (PI + PA'2 -I- @ - I(& - p&2 + 4c,r-* + 
6csr-'I cos 26 

(4.3) 

u X0 = - (PI - p&i2 - c,r-* -I- I@, - p&/2 + 6cg-‘I cos 28 
01: 

C 
= -2 [(pl - p,)‘4 + c7P + SC~~-~] sin 26 

TO determine the remaining functions c,(t) we use the zero boundary conditions (2.8). 
We first express x in terms of the strain. Because of (3.14), we will have 
Differentiating this eauation with respect to r and using (3.14) we obtain 

u1 = re22 - up o,. 

en = 8 (re,J!8r - u~.~,. u2,10 = 2s12 - r-l (ul.O1 - uJ 

We differentiate the second of these relationships with respect to 6 and we add it to 
the first. By virtue of the second equation in (2.2) we obtain 

x = E** + E~~,,~ - 2e12.01 - En. r = 1 (4.4) 

Since the boundary conditions (2.6) are zero in the case under consideration, then x = U 
for r= 1, i.e., taking (4.4) into account we obtain 

E - 0, EZl,,o - 2E12,01 - El1 = 0, r = 1 22 - (4.51 

We now determine the strain corresponding to the stresses (4.3) by means of (3.7) and 
substitute them intc (4.5). We ob-tai?. an expression for cp, c;, cs. For T = 1 we have by 
virtue of (4.3; 

on0 = --iA (1) (p_ - p?) T B (1) (p. - pp) cos 201 (4.6) 

a 12' = I'B (1) T 31'J (p1 - ~2) 

A (I) = 1 - 13vl i (1 - 5) RI 131 - (1 - 2v) RP.1 

2B (t) = -1 -i 'i, 131 $ 4 (4~1 - (1 - 2v) R)l-I.1 

It is seer. from (4.6) that fcr ill = ,r,> and g = 0 there is just the normal force N 
balancing the external press-res in the t.ube. 

5. Determination of the components aJll. From the formula for the complex 
representation of the stress (,'12/ F. 136: it fellows that 

Here (i (t 
prime denotes 
The functicns 
derivatlcn of 
ln the circle 

(5111 - IcI,2’ 1 r$’ - q’ - /+@ (Tq” - $‘). / i > 1 ;;.I: 

z). J (t, z) are f'L??CtiCXS Of tiZt t ,? 0 and the complex variable r. = re'e, the 
tne der_vat::Ye .w:t?. respect tc z, and the upper bar the comFlex conjugate. 

and IJ are azal~itlc in z 
:he KoLcscv form-l; !/:L:/, F 

icr each fixed t. Furthermcre, by modifying the 
. 3;‘; WE obtain, that the foiiowing equality hclos 

r = {;. 3 = 1) 

Here 

To make the funct:cr.s q and T specific, we introduce the following function on r: 

1. (1. :,I = - (U.?,O1 - itI*) e'4, ) L / = 1 

We note thatg = E (1 7- v)-'(I - R)r' cn the basis of (5.3). 
Substituting the Fourier-series expansion for the functions ~'~(f.0) 



into the boundary condition (2.8), we obtain that on r 

u1 = (I~ sin 6 - b, cos 6 + $ n (a,, sin nft - b, cos nt?) (5.6) 
n-d 

sums 
wise 

The components in the right side of each of the relationships (5.6) outside the infinite 
describe the displacement of the boundary of the medium as a rigid whole: counter-clock- 

rotation around the Ox, axis through an angle a,,/2, displacement by a distance -_b, 

w2 (1, 6) = -&au (1) $2 [a, (t) cos nt? - b,(t) sin n8] 
n4 
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(5.5) 

along the OX, axis, and displacement a distance a, along the Or, axis. . 
In the case under consideration the boundary conditions (3.13) are zero, hence they 

undergo no rigid displacements of the medium as a whole, i.e., the whole medium will be 
displaced exactly as is its boundary. However, when considering the strain of the medium, 
its displacement as a rigid whole is of no interest, hence we can set (2” = o1 = b, = 0. 
Taking account of these equalities we obtain 

v(t, ;)=-+l[(n - 1)C,P1 : (n + l)c,P'J 
n=? 

c,, (i) = b, (f) $ io, (t) 

It hence follows from the theorem on residues and relationships (5.3) and (5.4) that 

J’ (f, z) = s, f, (77 - 1) 7,,_-“-1 - s F, (I?” - 1) ?,J-“-l 7 II’ (f, OII) 
n=2 

s = px]-’ (I + R,) (I - R). s, = I” (I - R), 

We subs'itu'e (5 i c .7! intc (5.1: and we separate real and imaginary parts. We finally 
obtain that on r (i.e., for 1.: I = 1) 

crlll (1, I?) = % (n2 - 1) (5 - S,) (b,; cos ~6 -a, sin n8) (5.8) 
n=? 

Formulas (4.6) and (5.6) determine +Ai, acticr. of a tangenzia? force of intensity cl2 
and of normal press.;re of intensity -011 on the %be fromthe viscoelastic medium. 

The desired forces 4, and qn in (2.7) are 

q1 = g, - UllC - Cl,,'. q: = E2 - U12‘ T cl *I (5.9) 

where u,~' and unl have the form !4.6!, while ol,' and a,*] are given by (5.83). 

6. Tube stability conditions. We set up the stability conditions -rider the 
additional assumpticn 

011 < ".> l- 011 g1 (6.1) 

Taking (6.i) intc acco'znt WE +:r~te tJ?f equation for the deflections (i.7) and. (5.9) 
in the fcrm 

D (~.~,r,e - 2u,,,04 Y- u.~,J + b Ioil’ Cu.,,01 - ~(.~.&I’58 = ql,i,l - 92 (6.2: 

The bollndary conditions for (6.2) consist cf the values of the function u'* and its 
derivatives to fifth order, inclilsive, being equal at the points --n and n. 

Let us take a certain integer II 2 2. WE multiply both sides of (6.2) by cosn6 and we 
integrate with respect to 6 between the limits -s and n. Taking account of the 
orthogonality of the syster of functions sin r&6 
(5.9), we obtain 

and cos nt9 and the expansions (5.5),(5.8), 

x(d-l)J(t, n)a,(t)=G(n)l 
l/tnB (t) x (pl - p?) [a,..: (n - 2) ((~1 - 2)* - I)- 
h-2 (n - 2) ((n - 2)? - l)] 

G (n) = _fz (g2 cos nft - ng, sinn6)d6 

J (t, n) = Dn* (n’- l)-A(r)(p,‘PZ)n*-(S1- S) ‘(SI+S)~ 

(6.3) 
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It is clear that 

IG (n) I B 1’; (? -i 1) I g I i6.4: 

,g,=tj ~~~~~~~~~ g*Wj"r 
--n -n 

We furthermore assume that (Z -+ I?,)(1 - I$)= f - fi,, where the kernel '&(t.r) of the 
operator Rj satisfies conditions of the form (3.3). We introduce the notation 

A, ft) = mas, I a, 1~) 1, & W = max, 1 b, (4 I, 0 < z < 1 
A (fl, r, r& = DrP (RZ - 1) -r fl (1 - / r/ ) (n - 1) + 

WI-’ (1 - I rsl ) (li i 1) 

h, (r. r5) = min, nla ii (n, r. r5), n 2 2 

It is clear that 

Here x (,I) = 0 fsr I( ; il. 1 and x((i) = 1 fcr n 2 3. 
Because of (6.6; t‘r;ere is a constazt t'> 0 such 'that 

.I (n) -i, C)il <ES6 

New we sui% both sides cf (E.5: With respect to n. Taking account cf (E.GI-(6.E), wi- 
can show that a co;~st~t ci >? exists suet t%t 

Therefcre 

’ ii’, ct. i? 5, I .-L!(f) .- 3, if!] 

To estirr,ate v2 w6 rez:re t%2: 

i B (ii I; j - I’?)’ sup,, p; i,, - 2) [.I-’ (h) e, in) y, (la) - 
.I-’ (!I - 4) pi (f( - 4j! < 2. li -Y (_I 

Bt c II) = /1: - 1 

On satisf:;ins ccxdltions (6.12), wf ded;;ce, as for (6.9) and C6.101, that 

5 ?l f-1 
2: 

n--Bn)~~~igjlCzjB(fjiP1-_pnlj 

This means that 

: r.L(t, S)i = ! ii'* D, 1 < o&i (.3,x - KJ 

By virtue of (6.11), (e.14; we thereby establish 

Theorem 1. Let time assunptions fcrmuiated above be satisfied. Then the tube is 

when conditions (C.G),(E.:), (6.12! are satisfied. 

The stability con-- s;tions ca: be formulated i5 other terms dependingr or? the Ilir,ii 

of the kernels r an6 ~5. 
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Theorem 2. Let functions r'(t,r) and rsc(l, r)exist such that 

lim sup\ [ lr(t, T)--'(I, T)/ TJ r5(lr r)-rrS”(ft T)I]~T=O 
T-3 I>Tk 

I rc I < 1, I r5’ I < 1 

Then the tube is stable when conditions (6.6), (6.7) and (6.12) are satisfied everywhere 
in which r" should replace I and r5' should replace rb. 

Remark. lo. Let p, = p, = p, Requirements (6.7) and (6.12) are satisfied here. Then 
the tube is stable for A<]1 --A (rl]-li,(r.r& under the conditions of Theorem 1, and for p<[l+ 
A @)I-’ i., (9. rJo) under the conditions of Theorem 2 (the function A(i) is defined in (4.611. 

2O. Let pl=pI=p, and the equations of state of the medium have the simpler form 

cjj = E (1 iv)-' (' - x?) [Pjt + 3V (f - %')-I EFj[] 

Then both the formulation and the proof are simplified, in which it is necessary to set 
A',= R, = 0 everywhere. In particular, in this case 

en0 = -p (1 + p Q. $ p)-"-?], cl,*= = 0 
up9c = -p [i - p (i + P)-+?] 

Under the conditions of Theorem 1 the tube is stable for 

p < (i. A p) (i. 1 z~)-li., (r. (1) 

and under the conditions of Theorem 2 the quantity r in (6.15) is replaced by r'. 

(6.15) 

1. 
2. 

3. 
4. 

5. 

6. 

7. 
8. 

9. 
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